
define-syntax

define-syntax is a way to write a transformer that takes code written
in one form and automatically transforms it into a different form that
can be handled by the Scheme interpreter.

Other languages allow you to do something similar through "macros".
For example, you can put at the top of a C program

#define INC(x) x++
Then if you have a variable bob in the program the line

INC(bob)
is replaced with

bob++
by the C-preprocessor

define-syntax has similar rewriting effects, but is much more
powerful (of course).

It has the following form:

(define-syntax <keyword>
(syntax-rules ()

[pattern1 transformation1]
[pattern2 transformation2]
etc.))

Patterns can specify variables that can be used in the corresponding
transformation.

Patterns usually start with _ which means that the use of the new
syntax rule has to start with its keyword or name.
Patterns can include an ellipsis (3 dots) which mean that the
previous symbol or subpattern can be repeated 0 or more times.

For example, here is a definition of the syntax of let, as it is built into
the Scheme interpreter:

(define-syntax let
(syntax-rules ()

[(_ ((x e) ...) b1 b2 ...)
((lambda (x ...) b1 b2 ...) e ...)]))

Here is something a programmer might define. I want to take a
sequence of numbers, find the factorial of each, and then collect them
together into a single number using an operator. Altogether, I want
(! 3 4 2 +) to represent (+ (Factorial 3) (Factorial 4) (Factorial 2)), or 32,
while (! 3 4 2 *) is (* (Factorial 3) (Factorial 4) (Factorial 2)) or 288.

(define fact (lambda (n)
(if (zero? n) 1 (* n (fact (sub1 n))))))

(define-syntax !
(syntax-rules ()

[(_ x y ... op) (op (fact x) (fact y) ...)]))

Here is another simple example. We want the form zero! to take a variable
and sets it to 0, so

(define a 235)
(zero! a)

results in a having the value 0:
(define-syntax zero!

(syntax-rules ()
[(_ x) (set! x 0)]))

Note that this is very different from
(define set-to-zero (lambda (x) (set! x 0)))

If we say
(define b 23)
(set-to-zero b)

the value of b will remain 23.

Here is a more practical example:
(define-syntax when

(syntax-rules ()
[(_ condition b c ...)

(if condition (begin b c ...) #f)]))

We might use this with
(when (< x 5) (println "That is small") (set! x 10))

Finally, note that syntax rules don't evaluate their "arguments" the
way functions do. With the when rule we just defined,

(define a 10)
(when (< a 5) (println "small") (set! a 10))

does not print "small". This will be important when we look at lazy
evaluation and streams.

